Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers.

نویسندگان

  • Wolfgang Singer
  • Manfred Frick
  • Thomas Haller
  • Stefan Bernet
  • Monika Ritsch-Marte
  • Paul Dietl
چکیده

The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to "pull" surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of approximately 12.5 pN/ micro m. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an "all-or-none" fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using optics to measure biological forces and mechanics.

Spanning all size levels, regulating biological forces and transport are fundamental life processes. Used by various investigators over the last dozen years, optical techniques offer unique advantages for studying biological forces. The most mature of these techniques, optical tweezers, or the single-beam optical trap, is commercially available and is used by numerous investigators. Although te...

متن کامل

measuring viscoelastic properties of Red Blood Cell using optical tweezers

Efforts have been made to study the behavior of complex materials in micrometer dimensions with various techniques. One of these methods is the use of optical tweezers for biophysical applications. Red blood cells, as the most abundant blood-forming cells, play an important role in the life of living organisms, and their unique mechanical properties are important. In this report, the study of s...

متن کامل

Optical Tweezers for Nanomechanical Manipulation and Characterisation of Biological Cells

We have recently applied optical tweezers to study human erythrocyte deformation under various thermal-flow conditions, e.g. flow in an open space. Theoretically, Computation Fluid Dynamics (CFD) has been applied for simulating the complex flow-liposome interaction at different flow velocities. More importantly, both experimental and numerical studies have been carried out to determine the defo...

متن کامل

Optical quantification of forces at play during stem cell differentiation

A cell is in constant interaction with its environment, it responds to external mechanical, chemical and biological signals. The response to these signals can be of various nature, for instance intra-cellular mechanical re-arrangements, cell-cell interactions, or cellular reinforcements. Optical methods are quite attractive for investigating the mechanics inside living cells as, e.g., optical t...

متن کامل

Single chromatin fiber stretching reveals physically distinct populations of disassembly events.

Eukaryotic DNA is packaged into the cell nucleus as a nucleoprotein complex, chromatin. Despite this condensed state, access to the DNA sequence must occur during gene expression and other essential genetic events. Here we employ optical tweezers stretching of reconstituted chromatin fibers to investigate the release of DNA from its protein-bound structure. Analysis of fiber length increase per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003